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Abstract. When using the boundary element method to compute a potential field, the computations can be 
substantially reduced if the Green function implicitly satisfies some of the boundary conditions. This savings will be 
achieved at the expense of having to compute a more complicated Green function. This paper presents efficient 
formulae for computing the Green functions needed to solve the Laplace equation in domains bounded by a pair of 
parallel planes or an infinite rectangular cylinder. For both cases, an ascending power series is derived for the region 
close to the fundamental Rankine source, and a classical eigenfunction expansion is used in the complementary 
region. 

I. Introduct ion 

There are numerous potential problems in which some of the bounding surfaces can be 

idealized as a pair of infinite parallel planes or an infinite rectangular cylinder. The potential 

flows about models in towing tanks, water channels and wind tunnels are but a few 

examples. For all but the simplest model shapes, the velocity potential must be computed 

numerically. Numerical solutions can be obtained by applying the boundary element method 

in conjunction with the Rankine source potential 1 / I x -  x'l, the elementary singular solution 

of the three-dimensional Laplace equation. Here x = (x, y, z) is a Cartesian coordinate 

system and x = x' is the location of the source. Using this approach, both the surface of the 

model and the walls of the tank, channel, or wind tunnel must be discretized into panels. If 

however the boundary element method is applied in conjunction with a Green function that 

satisfies the boundary conditions on the walls, only the model surface has to be discretized 

into panels. Thus far fewer panels will be required to solve the problem numerically and a 

large savings of computer time will result provided the more complicated Green function can 

be evaluated rapidly. The present work therfore focuses on efficient methods of evaluating 

the Green functions for the domains sketched in Fig. 1. 
We denote by G 1 the Green function which satisfies periodic boundary conditions on the 

parallel planes defined by x = +_a/2 and sketched in Fig. 1.1. Of course G I is the potential of 

a Rankine source half way between the parallel planes. The subscript signifies that G 1 is 

periodic in one direction. We denote by G 2 the potential of a Rankine source located at the 

center of the rectangular cylinder defined by the two pairs of parallel planes x = +_a/2 and 

y = +_b/2, and sketched in Fig. 1.2. In this case the subscript indicates that G 2 satisfies 

periodic boundary conditions in two directions. Greengard [3] discusses the rapid evaluation 

by a fas t  mul t ipole  algori thm of a two-dimensional Green function which is periodic in two 

directions. 

* This work was performed while the author was a postdoctoral researcher in the Ocean Engineering Department of 
the Massachusetts Institute of Technology. 
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Fig. 1.2. Rectangular cylinder. Fig. 1.1. Parallel planes. 

Green functions which satisfy homogeneous Neumann or Dirichlet boundary conditions on 
x = +-a/2 can easily be constructed from G1, so it is only necessary to consider G 1 in detail. 
Likewise, Green functions which satisfy homogeneous Neumann or Dirichlet conditions, or 
combinations of the two, on the boundaries of the rectangular cylinder can be constructed 
from G 2. 

In Section 2 the governing equations satisfied by G 1 and G z are formulated and solutions 
are constructed by the method of images. The resulting infinite series of periodically spaced 
Rankine sources are not useful for routine computations because they converge very slowly, 
but they are a starting point for deriving alternative series that converge much more rapidly. 
Section 3 presents classical eigenfunction expansions of G1 and G z which converge exponen- 
tially fast when R 2 = y2 -t- z z is large in the case of G1, and when z is large in the case of G 2. 
Ascending power series which converge rapidly in the complementary domain where R and z 
are small, are derived in Section 4. Finally, Section 5 discusses the numerical implementation 
of these formulae. 

2. Formulation and solution by method of images 

The Green functions 61  and 6 2 m u s t  satisfy the Poisson equations 

~ x  2 + --Oy z + ~ G 1 = - 4 ~ ' 6 ( y ) 6 ( z )  . . . .  6 (x  - ma)  , (1.1) 

+ - -  + G 2 -47rS(z) ~ ~ 6 ( x -  m a ) 6 ( y -  nb)  (1.2) 
Oy 2 ~ = r n  = - o e  n = - ~  

Solutions of (1.1) and (1.2) may be constructed by superposing infinite sequences of 
Rankine source singularities: 
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Gl(x, R; a) = ( x  2 + R 2 )  - 1 / 2  -[" E { [ ( x  - ma) 2 + R2] -U2 - [ m a [ - 1 } ,  (2.1) 
m 

G2(x , y, z; a, b) = (x 2 + y2 + z2)-1/2 

+ ~] {[(x - ma) 2 + (y  - nb) 2 + z2] -'/2 - [(ma) 2 + (nb)2]-l/2} , (2.2) 
m , n  

where ~"m denotes summation over all positive and negative integers m except m = 0 and 
E,,,n denotes summation over all combinations of positive and negative integers m, n except 
the case m = n = 0. A constant is subtracted from each term in the infinite series to make the 
sequences converge to finite values. 

Green functions that satisfy homogeneous Neumann conditions on the parallel planes and 
rectangular cylinder, denoted here by H superscripts, can be constructed from appropriate 
combinations of their periodic counterparts: 

n ! G 1 (x, R, x'; a) = Gl(X - x ,  R; 2a) + a l ( x  + x', R; 2a) ,  (3.1) 

n t G2(x  , y, z , x ,  y'; a, b )=  G 2 ( x - x ' ,  y - y ' ,  z;2a,  2b)+ G2(x + x', y - y ' ,  z ;2a ,2b )  

+ G2(x + x', y + y', z; 2a, 2b) + G z ( x  - x ' ,  y + y', z; 2a, 2b) .  
(3.2) 

Without loss of generality, we shall henceforth set a equal to unity. 
In view of equations (3) and similar relations that can be constructed to obtain Green 

functions that satisfy homogeneous Dirichlet boundary conditions, it is only necessary to find 
efficient methods of evaluating G 1 and G 2. The infinite sums in equations (2) converge, but 
so slowly as to be useless for routine computation. Thus this discussion focuses on the 
derivation of alternative series expressions that converge more rapidly. Two complementary 
expressions are needed to compute each of these functions; eigenfunction expansions when 
R and z are large, and ascending power series when they are small. 

3. Eigenfunction expansions 

The eigenfunction expansions are classical results and methods of deriving them are 
presented in such texts as Smythe [6] and Morse and Feshbach [5]. The derivation of the 
eigenfunction expansion for G 2 is included here for the sake of completeness. The eigenfunc- 
tion expansions are presented first because of their chronological precedence, and because 
the eigenfunction expansion of G 1 is used to compute the coefficients of the power series for 
G a . 

Eigenfunction expansion of  a 1 

From an identity given in Gradshteyn and Ryzhik [2, equation 8.526] we obtain, after a 
change of variables, the relation 

( Gl(x, R) -- - 2  Y + In R + ~ Ko(2~.mR ) cos(2~'mx),  
m = l  

(4) 
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where Ko(x ) is the modified Bessel function of zeroth order and y is Euler's constant. The 
modified Bessel function decays exponentially for large values of its argument, so the infinite 
sum in (4) vanishes exponentially fast as R--~ o,. This leaves the leading logarithmic term 
which is what we might have expected; far from the x axis the distribution of discrete sources 
appears to be continuous and the potential is essentially two-dimensional. 

Eigenfunction expansion of G 2 

We first define the Fourier transform pair 

f(x) = f~ ei2=kxjT(k) d k ,  (5.1) 

.f(k) = f ~  e-i2~kxf(x) dx. (5.2) 

Taking the Fourier transform of (1.2) with respect to z gives 

02 02 } 
- - + - - - ( 2 r r k )  2 G 2 = - 4 7 r  ~ ~ 8 ( x - m ) 6 ( y - n b ) .  (6) 
OX 2 Oy 2 . . . . . . . .  

Poisson's summation formula can be applied to rewrite the right-hand side of (6) in the form 

4°I ]( y)] b 1 + 2 ~ cos(27rmx) 1 + 2 cos 2"rrn . (7) 
m = l  n = l  

This suggests assuming a solution of the form 

( y )  G2(x, y, k) = ~'~ ~ fftm,(k) cos(27rmx) cos 2~-n ~ , 
m = 0  n = 0  

(8) 

where ~m, are as yet unknown coefficients. Substituting (7) and (8) into (6) and collecting 
coefficients of like terms gives 

~ titan am" = 7rb [m2 + (n/b)2 + k2]-1 

1; m = n = O ,  
, where/3m = 2; m = O , n ¢ O o r m # O , n = O ,  (9) 

4; otherwise.  

Finally we take the inverse Fourier transform of (9) with respect to k to obtain the 
eigenfunction expansion of G2: 

2qT 
G2(x, y, z; b) = A - -b- [z I + Z a. , .  

rn,n 

Y) (10) × exp[-27r[zl~/mzb~/m 2 + (n/b) 2+ (n/b)Z] cos(27rmx) cos 2~-n ~ , 

where h is a constant, E,,,n again denotes summation over all integers m, n except the 
combination m = n = 0, and am0 = a0n = 2, amn = 4. It remains to determine the value of h 
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such that (10) is compatible with (2.2). This is accomplished by expressing G 2 in terms of G 1 
and then substituting the eigenfunction expansion (4). 

G 2 can be viewed as the superposition of an infinite number of G 1 functions aligned in the 
x-direction. The series (2.1) and (2.2) then give the relation 

G2(x, y, z; b) = G~(x, ~ + z z) + ~'~ [Gl(X, ~ ( y  - n b )  2 + z 2 )  - G ( 0 ,  Inbl)],  (11) 
n 

where E n denotes summation over all positive and negative integers n except n = 0. Once 
again, a finite constant must be subtracted from each term in the infinite series in order to 
make it converge. Substituting the eigenfunction expansion (4) for all occurrences of G~ in 
(11) except the first gives 

G2(x, y, z; b) = Gl(x, ~ + z 2) 

- 2  ~ [ln~/(y + nb) 2 + z 2 + l n ~ ( y -  nb) 2 + z 2 -  21n(nb)] 
n = l  

+ 4 ~ ~ [Ko(2rrm~/(y + nb) 2 + z 2) cos(27rmx) - Ko(2~mnb)] 
n = l  m = l  

+ 4 Z • [Ko(Z~m~(y  - n b )  2 + z 2) cos(Z~-mx) - Ko(Z~rmnb)]. (12) 
n = l  m = l  

It is convenient to define a complex variable ~" = y  + iz and replace the first infinite 
summation in (12) by the infinite product 

Then using the identity 

(o)2} 
s i n 0 = 0  l -I  1 -  , 

n = l  

(14) 

equation (12) can be rewritten as 

sin(Tr~'/b) ~ ,~, 
G z ( x , y , z ; b ) = G l ( x , ~ - ~ + z  2 ) - 2 1 n  (rr~/b) - 8  ~ __ Ko(27rmnb ) 

m = l  n = l  

+ 4 ~ ~ [Ko(27rm~/(y + nb) 2 + z 2) + Ko(27rm~/(y - n b )  2 + z2)] cos(2~-mx). (15) 
m = l  n = l  

The first double summation on the right side of (15) is a constant which is evaluated once 
and for all for a given b value. Equation (15) has uses other than the present one of 
determining the constant a; it is also needed to evaluate some of the coefficients in the power 
series expansion of G 2 and provides a means of confirming both the power series and the 
eigenfunction expansions. Returning to our original purpose, we substitute (4) for G 1 in 
(15), set (x, y) = (0, 0), and let z tend to infinity to obtain 

lim G2(0, 0, z; b) = - 2 y  + 4 In(2) - ~ -  Izl + 2 In - 8 ~'~ Ko(2~rmnb ) . (16) 
z----~ ~ m =  I n =  1 
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Taking the same limit of the eigenfunction expansion (10) and comparing with (16) gives 

( 4 ~ - )  ~ 
A = 2 (In ~-- - y - 8 Ko(2"n'mnb ) . (17) 

m = l  n = l  

Of course when numerically implementing (10), A can be evaluated once and for all for a 
given b value. 

4. Ascending power series expansions 

The power series are derived by Taylor expanding each of the terms in equations (2) about 
the points defined by the intersections of the planes of symmetry of the Green functions. 
This produces series in even powers of the independent variables. The coefficients of the 
terms in these power series are themselves infinite series which depend only on the integers 
m and n. These infinite series are known explicitly in the case of Ga, but not for G 2 where 
some effort is required to compute them. In both cases however, the constants multiplying 
the infinite series have been found in closed form by inspection. 

Power series expansion of G 1 

The function G 1 has planes of symmetry x = 0 and x = 1/2 and furthermore 

GI(x,R ) = G t ( 1 - x , R ) ,  

therefore it is only necessary to evaluate G 1 for the ranges 0 ~ x ~  1/2, R>/0 of its 
arguments. Two complementary power series of G 1 are derived here by Taylor expanding 
about the points (x, R) = (0, 0) and (1/2, 0), henceforth to be represented in vector notation 
by x 0 and x I respectively. These points were chosen because they are the intersections of the 
axis of symmetry and the planes of symmetry, therefore the Taylor series will involve only 
even powers of x and R. The expansions about the two points are denoted by (0) and (1) 
superscripts respectively. 

The Taylor series of an arbitrary function f(x, y) of two variables that is symmetric with 
respect to both variables about (x, y) = (x,, y,) is given by 

i__~o ~ 1 (2i+ 2j~[ a2/+2if ] (x 2i 2j 
. . . .  Xs) ( y  - y , )  f(x, y) ~" (2i + 2j)! 2j / 3x z' Oy2jJx=x, 

"= j = O  

(18) 

where 

2 i+  (2i + 2j)! 
2j 2j) = (2i)!(2j)! 

denotes the binomial coefficients. The main task is to evaluate the partial derivatives of f. 
We begin by rewriting (2.1) in the alternative forms 

G,(x, R) = I g°(x' R) + H~°)(x, R) (19) 
(go(X, R) + g,(x, R) + n~l ) (x ,  R ) '  
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where 

gm(X, R) = [(m - x) 2 + R2] -1/2 

and 

H]°)(x, R) = ~ [gm(X, R) - gin(O, 0)],  

H{')(x, R) = H]°)(x, R) - [gl(x, R) - g1(0, 0)]. 

157 

H~ ) = ~ ~ (_) j  2i + 2j ( 2 j -  1)!! ~(,),.. _ x,)2,R2i 

where 

c(O) { ; , ° ) ( 0 , 0 ) ;  i = j = O  

ij = [g,.(O, 0)]-2i-2j-1 ; otherwise 

i 1)t'' O) " II 1 \ 2 ,  ) 
~(i) 
, , j  = ; 

Here we note from the definitions (19) that 

H?'(O, O) = o ,  

n ~ l ) (  1 , O) = 4(ln2 - 1 ) ,  

(22) 

(23) 

where the latter result arises from an identity in Gradshteyn and Ryzhik [2, p. 8]. We also 
observe that 

s = 0, 1, (21) 

i = ] = 0  

otherwise. 

Next we apply the formula (18) to each term of H~, or in other words to the generic term gm 
to obtain the formula 

2i+2j [ O" "gin ] (2j- 1)!! (2i+ 2j] -2i-2]-I 

Lox:iOR2jJx=xs = ( - ) j  (-2j-)H 2j / [gm(xs'O)] , s = 0 , 1 ,  (20) 

where !! indicates the double factorial. For example, 

8 ! ! = 8 - 6 - 4 . 2 ,  7 ! ! = 7 . 5 . 3 . 1 ,  

and by definition 

0 ! ! = 1 ,  ( - 1 ) ! ! =  1. 

The i- and j-dependent factors in (18) and (20) are common to all terms of H 1 and can be 
moved outside the m-summation to obtain 
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E r ~'t~ ~ x - 2 i - 2 j - 1  m-2i-2j-1 tg, . tv,  u) = 2 ~] = 2~'(2i + 2j + 1) ,  
m m=l 

~ (  l~-2i-2j-l=g(a2i+2j+l 
E [gm(l,o)] -2i-2]-1 = 2 ~ ]  m -  ~ /  - 1 ) ~ ' ( 2 i + 2 j + 1 ) ,  

m = - ~  m=l 

(24) 

(25) 

where if(s) is the Riemann-zeta function. The latter expression has been derived from an 
identity in Abramowitz and Stegun [1]. The summation in (25) is over all m, thus (25) gives 
the coefficients of a power series representation of G 1 instead of H I. These coefficients grow 
geometrically as i + j  increases (~ ' ( s )=O(1 )  for s>>l) ,  hence the series converges very 
slowly if at all. Removing the terms corresponding to m = 0 and m = 1 from (25) gives the 
coefficients of the desired power series for/-/ l(S),  all of which are O(1).  

Summarizing these results, we have 

0 ;  i = j = O  
c}°) = 2~'(2i + 2j + 1) ; otherwise (26) 

= f 4 ( I n  2 - 1 )  
c~jt ) ~2[ (22 i+2 j+ l - -1 )~ (2 i+2 j  + 1 )  22i+2J+1] i = j = O  --  ; otherwise.  (27) 

This concludes the derivation of the power series representations of G 1. The coefficients 
have been obtained in closed form and can be evaluated once and for all. Newman [4] has 
derived a series identical to (21), (26) starting from an integral representation of G 1. 

Power  series expansion o f  G 2 

The same approach can be followed to derive power 
series representations of the function G 2. G 2 has planes 
of symmetry at x = 0, x = 1/2,  y = 0, y = b /2 ,  and z = 0, 
therefore we are only interested in evaluating it in the 

region 0 <~ x <~ 1 /2 ,  0 <~ y <~ b /2 ,  z >I O. Four complemen- 
tary power series are derived here by Taylor  expanding 
about the four points x = (x s, Ys, O) = Xs, s -= O, 1, 2, 3, 

defined by the intersections of the planes of symmetry. 
These points and the corresponding power series are 
numbered as shown in Fig. 2. The power series for G2, 

like those for G t, will involve only even powers of the 
independent  variables. 

We begin by rewriting the series (2.2) in the form 

Y 
b 
2 

X3 - . . . . ~  X2 

~#Xo ~ # X l  
Vv v y 

0 a x 
2 

Fig. 2. Scheme for numbering points 
where Taylor expansions of G2 are 
performed. 

Gz(x ,  y, z; b)  = goo(X, y,  z; b)  + . . .  + H¢S)tx 2 \ , y , z ; b ) ,  s = 0 , 1 , 2 , 3 ,  (28) 

where 

gm,(x ,  y, z; b) = [(m - x) 2 + ( n b -  y)2 + z2]-1/2 

and 

H(S)tx = 2 , , Y, z; b)  ~ [gmn(X, y,  Z; b)  - gmn(O, O, 0; b)] m,n 
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The terms represented by . . .  in (28) may be other image-source potentials in the 
neighborhood of xs, and Zm, n denotes summation over all m, n except those values 
corresponding to the .-- terms. This is a much looser definition of E,,.n than that given in 
connection with (2.2). For example, if 1/2 < b < 1, the . . .  terms for the expansion about x 0 
would be g0,1(x, y, z; b) and g0 _l(X, y, z; b). Figure 3 indicates which terms are treated 
separately for b = 1 and b = 1/2. 

The Taylor expansion of H 2 with respect to z alone, about the z = 0 plane, is obtained by 
setting i = 0 in (18) and substituting H 2 forf .  We also change the j index to k. Once again the 
differential operators in (18) can be moved inside the summation over m and n, thus the 
corresponding derivatives of gmn for arbitrary m, n are needed. By analogy with (20), 

[ 02~gmn ] (2k - 1)!! b ) ] _ 2 k _ l  . 

Oz 2k Jz=o = (_)k (2k)?! [gmn(X' y'O; (29) 

We next obtain the Taylor expansion of [gmn] -2k-1 with respect to x and y, about the point 
x = x s by again substituting in (18). The necessary derivatives were evaluated up to the order 
i + j + k < 5 and the following formula was obtained by inspection: 

2i+2j-2k-1] i J p+q/2i ) (2 j  ) . 

[ 0 "gmn _ __ 1 ~] ~] (--) ~2p 2q (2, + 2j + 2k + 2p + 2q + 1)?' 
L Ox 2i Oy zj ,,=,,. ( 2 k -  1)iT "" p = 0  q = 0  

x ( 2 i -  2p - 1)!!(2y-  2q - 1)!!m2e(nb)Zq[gm.(Xs, Ys, O; b)] 2(i+j+k+p+q)+l (30) 

The only factors that depend on m, n are the last three on the right side of (30), so the order 
of summations can be interchanged to give, finally, 

b=l 

• Yl • • • O • 1 ( 

-1- ~ 1 - x ' -  .1- ol 1 x -i- ~ -~- 
I i 

b=l/2 

Y I  Y l  Y : Y 
• 1 • • • • 1 0 • 1 
• • , o  . 

-12, o .12, o ~ 1 0  
• -l'n'/ • • -l'u'/ • • • • 

-] -1 

• Rankine source location 
• Power series expansion point 
O Rankine source excluded from power series expansion 

Fig. 3. R a n k i n e  sources  tha t  are  e x c l u d e d  f rom power - se r i e s  e x p a n s i o n s  for b = 1 and  b = 1 /2 .  
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~ ~ k~O (__)i+]+k (2i+2j)~(s)e..x,)Z,(y_y,);jzZ k 
H~') = ~ (2k)!!(2i + 2j)!  2j ("ijkt'~" 

i = 0  j = 0  

(31) 

where 

i ] 
~(s> Z Z (-)P+q(2i)(2lq)(2i+2j+2k+2p+2q + 1),, 
~'Ok = 2p p=O q=O 

x ( 2 i -  2p - 1) ! ! (2 j -  2q - l~')A(s) ~ ] " ~ i ]kpq (32) 

d(*) = ~ (m)ZP(nb)Zq[g,,,.(x~, y .  O; b)] z(i+j+k+p+q)+1 (33) 
i j kp  q ' " 

m , n  

The coefficients .¢(~) depend only on the aspect ratio b which is fixed for a particular ~'~ijkpq 

problem, so they can be computed once and for all for a given b value. The remainder of this 
section discusses ways of evaluating these coefficients. 

When i + j + k > 2 the double sum in (33) converges fast enough to be summed directly, 
thus our main concern is with the coefficients whose indices satisfy i + j  + k = 0 and 
i + j + k = l .  We observe f o r i + j + k = 0 t h a t ,  

d(') =H( ' ) tx  y . , O ; b )  s = 0 , 1 , 2 , 3  0 0 0 0 0  2 \ s )  , " (34) 

The utility of (15) should now be apparent; it can be substituted for the right side of (34) 
after subtracting the appropriate near-by-image potentials. Even though (15) is not suitable 
for general-purpose use, it is efficient enough for the one-time evaluation required by (34). 
The coefficient ~,(0) is trivial of course, as may be seen from (28). £* 0 0 0 0 0  

The coefficients corresponding to i + j + k = 1 are 

d ( S )  = f ] ( s )  ~ .  f ] ( s )  ~-  Z [ g m n ( X s ,  L ,  O; b)] 3 (35) 1 0 0 0 0  ~ 0 1 0 0 0  ~ 0 0 1 0 0  ) 
m , n  

"t(~) = E (m  2 - x~) [g. , . (x.  y~, 0; b)l 5 (36) 
~ 1 0 0 1 0  ) 

m , n  

'/('> ~ (nb z = - Y , )  [g , , , (xs ,  L ,  0; b)] '  (37) ~ 0 1 0 0 1  
m , n  

From the definition (28), we observe that 

[ 02H~ ~)] = _A(s) +'~a(s) 
~Jx=x, ~ 1 0 0 0 0  ~ - - 1 0 0 1 0  ' 

j ,=. ,  = -d ?000 + 3a 1'001. 

Adding these expressions and using the definitions (35) through (37) gives 

d2 2 
. ( "  °" °2H " (38) -loooo= ~ + OyZ/ : x=x,= Oz 2 x=x,' 



1 ( 02H~ s) X=Xs 
d(;o)o,o = ~ \ 

d(,) 1 ( 02H~ s) X=Xs 
oloo, = 5 \ - - T T  2 
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d(s) 
+ ~loooo/ , (39) 

d(s) 
+ ~loooo/ - ( 4 0 )  

The second equality in (38) arises from the Laplace equation but is not very useful. The 
second derivatives of H 2 can be evaluated from (15) which is easily differentiated twice with 
respect to x, but not y. However ,  interchanging the x and y arguments in (15) and replacing 
b by its reciprocal gives an expression which is easily differentiated twice with respect to y. 
This amounts to constructing G 2 from an infinite series of G 1 functions that are aligned in the 
y instead of the x direction. By this process one arrives at the interesting result 

[(m) 2 + (nb)2]  -3/2 = 4(1 + b-3)~'(3) - 32~r 2 
m,n 

m=n#O 

~ [Ko( b) × 75'. E m 2, mn 
r n = l  n = l  

(41) 

Both sides involve infinite double sums, but the one on the right side converges exponen- 
tially fast. 

5. Numerical  evaluation 

Two F O R T R A N  subroutines, named G R E E N 1  and GREEN2,  have been developed to 
evaluate G 1 and G 2 respectively, and their first derivatives. GREEN1  is completely self 
contained, but G R E E N 2  is accompanied by the subroutine G 2 C O E F  which evaluates the 
power-series coefficients. The aspect ratio b is the only input to G 2 C O E F  which must be 
called once for a given b value. 

The eigenfunction expansion is used for R > 1/2 in the case of G1, and for z > 1/4 in the 
case of G 2. The G R E E N 1  subroutine has been checked by comparing the power series and 
the eigenfunction expansion in an intermediate region, and comparing both with a brute- 
force evaluation of the series (2.1). The availability of three different ways of computing Gz, 
not counting the brute-force approach,  made checking it even easier. The expression (15) is 
useful at least in the range 0 < z < 2, so it has been used to confirm both the power series 
and the eigenfunction expansions. Also, the power series have been checked against each 
other in regions where they overlap. To achieve an absolute accuracy of 10 -6 while 
minimizing computational effort,  both the eigenfunction expansions and the power series are 
truncated according to the magnitudes of their arguments. 

On a VAX 11-750 minicomputer,  the average CPU time required for one evaluation of the 
function and its derivatives was 1.0 ms for G 1 and 2.2 ms for G 2. This compared with an 
execution time of 0.2 to 0.6 ms for one evaluation of the Bessel function Jo(x), using a 
subroutine from the International Mathematical and Statistical Library (IMSL). G1 and G 2 
are of course two and three parameter  functions respectively while Jo(x) depends on one. 
Further  improvement  in the computational times could probably be achieved by converting 
the power series to economized Chebyshev polynomials. 

Both functions are tabulated over selected ranges in Tables 1 and 2. 
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Table  1. Values of G1 - (x 2 + R 2) 1/2 and its derivatives computed by subroutine GREEN1 

0 0 
R G 1 - -  ( X  2 + R 2 )  - 1 / 2 -  - -  - -  x 

Ox OR 

0.000 0.0 0.000000 0.000000 0.000000 
0.1 -0.011943 0.000000 -0.237338 
0.2 -0.046877 0.000000 -0.457090 
0.5 -0.260007 0.000000 -0.904676 
1.0 -0.764466 0.000000 -1.024870 
5.0 -3.187013 0.000000 -0.384870 

0.125 0.0 0.038078 0.617607 0.000000 
0.1 0.025144 0.601141 -0.256796 
0.2 -0.012553 0.555364 -0.491945 
0.5 -0.238761 0.340854 -0.948442 
1.0 -0.757822 0.105776 -1.040528 
5.0 -3.186950 -0.015351 -0.377578 

0.250 0.0 0.158883 1.344544 0.000000 
0.1 0.142479 1.303091 -0.324715 
0.2 0.095213 1.189623 -0.611733 
0.5 -0.174358 0.691902 -1.088349 
1.0 -0.738284 0.205233 -1.086861 
5.0 -3.186763 -0.021044 -0.360086 

0.375 0.0 0.385609 2.350501 0.000000 
0.I 0.361245 2.257494 -0.479525 
0.2 0.292549 2.010935 -0.875285 
0.5 -0.065219 1.055924 -1.351002 
1.0 -0.707059 0.291607 -1.161568 
5.0 -3.186453 -0.013253 -0.342795 

0.500 0.0 0.772588 3.999971 0.000000 
0.1 0.729617 3.771479 -0.836749 
0.2 0.613138 3.201649 -1.443005 
0.5 0.089450 1.414214 -1.780607 
1.0 -0.666226 0.357771 -1.259716 
5.0 -3.186020 0.003941 -0.335850 

Table  2. Values of  G z - (x 2 + y2 + z 2) 1/z and its derivatives for b = 1/2, computed by subroutine GREEN2 

x y z G2 _ (x 2 + y2 + z2) 1/2 ~ ~ 
Ox by  Oz 

0.00 0.00 0.0 0.000000 0.000000 0.000000 
0.1 -0.159338 0.000000 0.000000 
0.2 -0.609190 0.000000 0.000000 
0.5 -3.056511 0.000000 0.000000 
1.0 -8.516259 0.000000 0.000000 
5.0 -57.989231 0.000000 0.000000 

0.10 0,00 0.0 -0.027719 -0.503244 0.000000 
0.1 -0.183826 -0.443226 0.000000 
0.2 -0.625947 -0.299303 0.000000 
0.5 -3.054331 0.052323 0.000000 
1.0 -8.512728 0.070837 0.000000 
5.0 -57.989189 0.000800 0.000000 

0.000000 
-3.135674 
-5.745934 
-9.801013 

-11.613522 
-12.526371 

0.000000 
-3.074917 
-5.659138 
-9.772597 

-11.619303 
-12.526395 
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Table 2. (continued) 

x y z G2 _ (x z + y2 + z2)-1/2 0 ~ 
ax Oy Oz 

0.20 0.00 0.0 -0.082516 -0.475130 0.000000 0.000000 
O. 1 - O. 231385 - O. 399834 O. 000000 - 2.938379 
0.2 -0.656146 -0.219544 0.000000 -5.464175 
O. 5 - 3.042821 O. 199806 O. 000000 - 9.715502 
1.0 - 8.502015 O. 143868 O. 000000 - 11.638036 
5.0 -57.989071 0.001596 0.000000 -12.526466 

0.50 0.00 0.0 0.284722 4.000000 0.000000 0.000000 

0.1 0.127490 3.771465 0.000000 -3.102662 
0.2 -0.320694 3.201644 0.000000 -5.761146 
0.5 -2.823080 1.414214 0.000000 -10.119673 
1.0 -8.425631 0.357771 0.000000 -11.804031 
5.0 -57.988239 0.003941 0.000000 -12.526963 

0.10 0.05 0.0 0.016031 -0.591471 1.762578 0.000000 
0.1 -0.144186 -0.519884 1.594885 -3.151499 
0.2 -0.595782 -0.351189 1.209938 -5.762772 
0.5 -3.046202 0.044833 0.324163 -9.809973 
1.0 -8.511500 0.070474 0.049008 -11.622927 
5.0 -57.989182 0.000799 0.000400 -12.526401 

0.20 0.10 0.0 0.050546 -0.966998 2.699587 0.000000 
0.1 -0.109806 -0.831244 2.457633 -3.153374 
0.2 -0.561488 -0.518904 1.897521 -5.762466 
0.5 -3.014643 0.151282 0.556173 -9.836324 
1.0 -8.497340 0.141192 0.092850 -11.651405 
5.0 -57.989029 0.001595 0.000798 -12.526490 

0.50 0.25 0.0 0.466537 2.862167 1.431084 0.000000 
0.1 0.302095 2.730081 1.365040 -3.242957 
0.2 -0.165484 2.389084 1.194542 -5.998958 
0.5 -2.744036 1.185185 0.592593 -10.331485 
1.0 -8.404084 0.332522 0.166261 -11.854431 
5.0 -57.987991 0.003926 0.001963 -12.527109 
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